During these seconds, Watson's cognitive apparatus—2,208 computer
processors working in concert—mounted a massive research operation
around Moshe Dayan and his signature facial wear. They piled through
thousands of documents stored in the machine. After a second or so,
different programs in the computer, or algorithms, began to suggest
hundreds of possible answers. To humans, many of them would look like
wild guesses. Some were phrases that Mr. Dayan uttered, others were
references to his military campaigns and facts about Israel. Still
others proposed various articles of his clothing. At this point, the
computer launched its second stage of analysis, figuring out which
response, if any, merited its confidence. It proceeded to check and
recheck facts, making sure that Moshe Dayan was indeed a person, an
Israeli, and that the answer referred to something he wore on his face.
A human looking at Watson's frantic and repetitive labors might
conclude that the player was unsure of itself, laughably short on common
sense, and scandalously wasteful of computing resources. This was all
true. Watson barked up every tree, and from every conceivably angle. The
pattern on its screen during this process, circles exploding into
little stars, provided only a hint of the industrial-scale computing at
work.
In a room behind the podium, visible through a horizontal window,
Watson's complex of computers churned, and the fans cooling them roared.
This time, its three seconds of exertion paid off. Watson had come up
with a response. The computer sent a signal to a mechanical device on
the podium. It was the size of a large aspirin bottle with a clear
plastic covering. Inside was a buzzer. About one one-hundredth of a
second later, a metal finger inside this contraption shot downward,
pressing the button.
Justin Bernbach, a 38-year-old from Brooklyn, stood to Watson's left.
The airline lobbyist had pocketed $155,000 while winning seven straight
"Jeopardy" matches in 2009. Unlike Watson, Mr. Bernbach understood the
sentence. He knew precisely who Moshe Dayan was as soon as he saw the
clue, and he carried an image of the Israeli leader in his mind. He had
the answer. He gripped the buzzer in his fist and frantically pressed it
four or five times as the light came on.
But Watson had arrived first.
"Watson?" said Mr. Crain.
The computer's amiable male voice arranged the answer, as "Jeopardy"
demands, in the form of a question. "What is eye patch?" it said.
"Very good," Mr. Crain said. "An eye patch on his left eye. Choose again, Watson."
Mr. Bernbach slumped at his podium. This match with the machine wasn't going well.
***
It was going magnificently
for David Ferrucci. As the chief scientist of the team developing the
"Jeopardy"-playing computer, Mr. Ferrucci was feeling vindicated. Only
three years earlier, the suggestion that a computer might match wits and
word skills with human champions in "Jeopardy" sparked opposition
bordering on ridicule in the halls of IBM Research. And the final goal
of the venture, a nationally televised match against two "Jeopardy"
legends, Ken Jennings and Brad Rutter, seemed risky to some, a bit
déclassé to others. "Jeopardy," a TV quiz show, appeared to lack the
timeless cachet of chess, which IBM computers had mastered a decade
earlier.
Nonetheless, Mr. Ferrucci and his team
went ahead and built their machine. Months earlier, It had fared well
in a set of test matches. But the games revealed flaws in the machine's
logic and game strategy. It was a good player, but to beat Messrs.
Jennings and Rutter, who would be jousting for a million-dollar top
prize, it would have to be great. So they had worked long hours over the
summer to revamp Watson. This September event was the coming-out party
for Watson 2.0. It was the first of 50 test matches against a higher
level of competitor: humans, like Justin Bernbach, who had won enough
matches to compete in the show's Tournament of Champions.
Watson, in these early matches, was
having its way with them. Mr. Ferrucci, monitoring the matches from a
crowded observation booth, was all smiles. Keen to promote its
"Jeopardy"-playing phenom, IBM's advertising agency, Ogilvy &
Mather, had hired a film crew to follow Mr. Ferrucci's team and capture
the drama of this opening round of championship matches. The observation
room was packed with cameras. Microphones on long booms recorded the
back and forth of engineers as they discussed algorithms and Watson's
response time, known as latency.
It was almost as if Watson, like a
human giddy with hubris, was primed for a fall. The computer certainly
had its weaknesses. Even when functioning smoothly, it would commit its
share of wacky mistakes. Right before the lunch break, one clue read,
"The inspiration for this title object in a novel and a 1957 movie
actually spanned the Mae Khlung." Now, it would be reasonable for a
computer to miss "The Bridge Over the River Kwai," especially since the
actual river has a different name. Perhaps Watson had trouble
understanding the sentence, which was convoluted, even for humans. But
how did the computer land upon its outlandish response, "What is Kafka?"
Mr. Ferrucci didn't know. Those things happened, but Watson still won
the two morning matches.
It was after lunch that things
deteriorated. Mr. Bernbach, so frustrated in the morning, started to
beat Watson to the buzzer. Meanwhile, the computer was making risky bets
and flubbing entire categories of clues. Defeat, which seemed so remote
in the morning, was now just one lost bet away. This came in the fourth
match. Watson was winning by $4,000 when it stumbled on this final
clue: "On Feb. 8, 2010, the headline in a major newspaper in this city
read: 'Amen! After 43 years, our prayers are answered.'" Watson missed
the reference to the previous day's Super Bowl, won by the New Orleans
Saints. It bet $23,000 on Chicago. Mr. Bernbach also botched the clue,
guessing New York. But he bet less than Watson, which made him the first
human to defeat the revamped machine. He pumped his fist.
In the sixth and last match of the
day, Watson trailed Mr. Bernbach, $16,200 to $21,000. The computer
landed on a Daily Double, which meant it could bet everything it had on
nailing the clue. It was under the category "Colleges and Universities."
A $5,000 bet would have brought Watson into a tie with Mr. Bernbach. A
larger bet, while risky, could have catapulted the computer toward
victory. "I'll take five," Watson said.
Five. Not $5,000, not $500. Five
measly dollars of funny money. The engineers in the observation booth
were stunned. But they kept quieter than usual, since cameras were
rolling.
Then Watson crashed. It occurred at
some point between placing that lowly bet and attempting to answer a
clue about the first Catholic college in Washington. Watson's "front
end," its voice and avatar, were waiting for its thousands of
processors, or "back end," to deliver an answer. It received nothing.
Anticipating these situations, the engineers had prepared Watson with
set phrases. "Sorry," Watson said, reciting one of them, "I'm stumped."
Its avatar displayed a dark blue circle with a single filament orbiting
mournfully in the antarctic latitudes.
What to do? Everyone had ideas. Maybe
they should finish the game with an older version of Watson. Or perhaps
they could hook up Watson to another up-to-date version of the program
at the company's Hawthorne labs, six miles down the road. But some
worried that a remote connection would slow Watson's response time,
causing it to lose more often on the buzz. In the end, as often happens
with computers, a reboot brought the hulking "Jeopardy" machine back to
life. But Mr. Ferrucci and his team got an all-too-vivid reminder that
their "Jeopardy" player, even as it prepared for a national TV debut,
could go haywire at any moment. When Watson was lifted to the podium,
facing banks of TV lights, it was anybody's guess how the computer would
perform.
***
Only four years earlier,
in 2006, Watson was a prohibitive long shot, not just to win at
"Jeopardy," but even to be built. For more than a year, the head of IBM
Research, a physicist named Paul Horn, had been pressing different teams
at the company to pursue a "Jeopardy"-playing machine. The way Mr. Horn
saw it, IBM had triumphed in 1997 with its chess challenge. The
company's machine, Deep Blue, had defeated the reigning world champion,
Garry Kasparov. This burnished IBM's reputation among the global
computing elite while demonstrating to the world that computers could
rival humans in certain domains associated with intelligence.
That triumph had left IBM's top
executives hungry for an encore. Mr. Horn felt the pressure. But what
could the researchers get a computer to do? Deep Blue had rifled through
millions of scenarios per second, calculated probabilities, and made
winning moves. But it had skipped the far more complex domain of words.
This, Mr. Horn thought, was where the next challenge would be. The next
computer should charge into the vast expanse of human language and
knowledge. For the test, Mr. Horn settled on "Jeopardy." The quiz show,
which debuted in 1964, attracted some nine million viewers every
weeknight. It was the closest thing in the United States to a knowledge
franchise. "People associated it with intelligence," Mr. Horn later
said.
There was one small problem. For
months, he couldn't get any takers. "Jeopardy," with its puns and
strangely phrased clues, seemed too hard for a computer. IBM already had
teams building machines to answer questions, and their performance, in
speed and precision, came nowhere close to even a moderately informed
human. How could the next machine grow so much smarter?
Mr. Horn eventually enticed David
Ferrucci and his team to pursue his vision. An expert in Artificial
Intelligence, Mr. Ferrucci had a wide and ranging intellect. He was
comfortable conversing about everything from the details of
computational linguistics to the evolution of life on Earth and the
nature of human thought. This made him an ideal ambassador for a
"Jeopardy"-playing machine. After all, his project would raises all
sorts of issues, and fears, about the role of brainy machines in
society. Would they compete for jobs? Could they establish their own
agendas, like the infamous computer, HAL, in "2001: A Space Odyssey,"
and take control? What was the future of knowledge and intelligence, and
how would brains and machines divvy up the cognitive work?
For humans, knowledge is an entire
universe, a welter of sensations and memories, desires, facts, skills,
songs and images, words, hopes, fears and regrets, not to mention love.
But for those hoping to build intelligent machines, it has to be
simpler. Broadly speaking, it falls into three categories: sensory
input, ideas and symbols.
Consider the color blue. It's
something that computers and people alike can perceive, each in their
own fashion. Sensory perception is the raw material of knowledge. Now
think of the three-letter word "sky." Those letters are a symbol for the
biggest piece of blue in our world. Computers can handle such symbols.
But how about this snippet from Lord Byron? "Friendship is love without
his wings." That sentence represents the third realm of knowledge:
ideas. How can a machine make sense of these? In these early years of
the 21st century, ideas remain the dominion of humans—and the frontier
for thinking machines.
Over the next four years, Mr. Ferrucci
set about creating a world in which people and their machines often
appeared to switch roles. He didn't know, he later said, whether humans
would ever be able to "create a sentient being." But when he looked at
fellow humans through the eyes of a computer scientist, he saw patterns
of behaviors that often appeared to be pre-programmed: the zombie-like
commutes, the near-identical routines, from tooth-brushing to feeding
the animals, the retreat to the same chair, the hand reaching for the TV
remote. "It's more interesting," he said, "when humans delve inside
themselves and say, 'Why am I doing this? And why is it relevant and
important to be human?' "
His machine, if successful, would nudge people toward that line of
inquiry. Even with an avatar for a face and a robotic voice, the
"Jeopardy" machine would invite comparisons to the other two contestants
on the stage. This was inevitable. And whether it won or lost on a
winter evening in 2011, the computer might lead millions of spectators
to rethink the nature, and probe the potential, of their own humanity.
—From "Final Jeopardy: Man vs. Machine and the
Quest to Know Everything" by Stephen Baker, to be published by Houghton
Mifflin Harcourt on Feb. 17. Copyright © by Stephen Baker. Reprinted by
arrangement with Houghton Mifflin Harcourt.
|